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Abstract27

The field of energy forecasting has attracted many researchers from different fields (e.g., meteorology, data sciences,28

mechanical or electrical engineering) over the past decade. Solar forecasting is a fast-growing subdomain of energy29

forecasting. Despite several previous attempts, the methods and measures used for verification of deterministic (also30

known as single-valued or point) solar forecasts are still far from being standardized, making forecast diagnosis and31

comparison difficult.32

To diagnose and compare forecasts, the well-established Murphy–Winkler framework for distribution oriented33

forecast verification is introduced to the solar forecasting community. This framework examines aspects of forecast34

quality, such as reliability, resolution, association, or discrimination, and diagnoses the joint distribution of forecasts35

and observations, which contains all time-independent information relevant to verification. To verify forecasts, one36

can use any graphical display or mathematical/statistical measure to provide insights and summarize the aspects of37

forecast quality. The majority of graphical methods and accuracy measures known to solar forecasters are specific38

methods under this general framework.39

Additionally, measuring the skillfulness of forecasters is also of general interest. The use of the root mean square
error (RMSE) skill score based on clear-sky adjusted persistence is recommended. By standardizing the accuracy mea-
sure (i.e., RMSE) and reference forecasting method (i.e., clear-sky adjusted persistence), RMSE skill score allows—
with appropriate caveats—comparison of forecasts made using different models, across different locations and time
periods.
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1. Introduction42

Climate change intensified by the on-going anthropogenic greenhouse gas emissions poses a broad threat to hu-43

manity (Mora et al., 2018).1 To limit global warming, the mitigation pathways would require substantial emissions44

reductions over the next few decades (IPCC, 2014). The utilization of solar energy and other forms of renewable and45

clean energy therefore must step up to fulfill humanity’s ever-increasing energy demand. The power grids, which46

transmit and distribute electricity to end users, are being monitored and controlled by system operators at all times47

to ensure reliable power delivery. Considering that solar energy is inherently variable, till utility-scale energy stor-48

age becomes economically viable globally, operational excellence of the power grids can benefit from accurate solar49

forecasts. Consequently, solar forecasting is now considered of high value (Martinez-Anido et al., 2016; Huang and50

Thatcher, 2017).51

Surface shortwave radiation fluctuates as a function of cloud cover, aerosols, and other weather variables. Fore-52

casts are used in switching energy sources, planning backup, calculating reserves, and constantly trading power on the53

electricity market. The horizons covered by modern solar forecasting range from a few seconds to a few days. Over54

the last decade, the literature has bloomed. A wide spectrum of methods, either physics-based (e.g., sky or shadow55

imagery, remote sensing, or numerical weather prediction), data-driven (e.g., time series, spatio-temporal statistics,56

or machine learning), or and a combination or hybrid of both, has been proposed (see Blaga et al., 2019; Yang et al.,57

2018; van der Meer et al., 2018; Voyant et al., 2017; Antonanzas et al., 2016; Ren et al., 2015; Inman et al., 2013,58

for reviews). Furthermore, the existing studies span a range of time intervals and locations, with different weather59

conditions. Because of these differences, the field would benefit from having a general verification framework for60

forecast diagnosis and standardization of accuracy measures or metrics 2 for forecast comparison.61

This article has three missions. The first is to introduce the distribution-oriented forecast verification framework62

to the solar forecasting community. The idea of using distributions—in particular the joint distribution of forecasts63

and observations—originates in the work of Murphy and Winkler (1987). A joint distribution contains all time-64

independent information relevant to verification. As such, it offers a more detailed view than the traditional measure-65

oriented approach in terms of forecast diagnosis. The second mission is to recommend an accuracy measure that66

should be universally reported in solar forecasting studies—the root mean square error (RMSE) skill score based67

on clear-sky adjusted persistence. The third mission is to look into a series of practical issues in terms of forecast68

verification, so that the recommended procedures can be adopted worldwide.69

While there will always be trouble in gaining universal consensus within the community on the appropriate mea-70

sures and methods, the authors of this work represent a broad range of active researchers in the solar forecasting71

community. The authors wish the forecast verification procedure herein discussed can allow for greater interpretabil-72

ity of results, and direct—“apples to apples”—comparisons of techniques. We anticipate positive feedback from the73

rest of the community.74

The organization of this study is as follows. The forecast verification problem and the perceived difficulties are75

elaborated in Section 2. Distribution-oriented forecast verification is discussed and exemplified in Section 3. The76

recommended accuracy measure is justified in Section 4, alongside with some discussions on practical concerns.77

Section 5 concludes with a series of recommendations.78

∗Corresponding author. Tel.: +65 9159 0888.
Email address: yangdazhi.nus@gmail.com (Dazhi Yang)

1The Intergovernmental Panel on Climate Change (IPCC) is 95 percent certain that humans are the main cause of current global warming (IPCC,
2014).

2“Measures” and “metrics” are distinct concepts in measure theory. A measure µ on a set X is a mapping µ : A → [0,∞] defined on a σ-algebra
A that satisfies non-negativity, null empty set, and σ-additivity, that is µ(A) ≥ 0 ∀ A ∈ A, µ(∅) = 0, and µ(t j∈NA j) =

∑
j∈N µ(A j), where symbol

t denotes disjoint union (Schilling, 2017). On the other hand, a metric is a distance measure d : X × X → [0,∞] that satisfies definiteness,
symmetry, and triangle inequality, that is d(x, y) = 0 iff x = y, d(x, y) = d(y, x), and d(x, y) ≤ d(x, z) + d(z, y), ∀ x, y, z ∈ X. (Schilling, 2017).
Nonetheless, moving out from measure theory, the two terms are often used interchangeably, e.g., “accuracy measure” and “error metrics” use the
words “measure” and “metric” in their everyday sense. To most forecasters, especially forecast practitioners, they both refer to functions of forecast
errors, such as MBE, MAE, or RMSE.
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2. Problem description79

Solar forecasting is a term applied to any form of estimating the solar energy resource ahead of time. With a80

fast-growing global portfolio of installed solar energy technology, the need for solar forecasting to facilitate improved81

operations orchestration and market compatibility is paramount. A rapidly expanding scientific community in the82

subdomain of energy forecasting have contributed numerous methodologies and approaches towards solar forecasting83

(Hong et al., 2016). A major goal of all forecasters is accuracy. The variability in solar irradiance intrinsically governs84

predictability (Pedro and Coimbra, 2015). Therefore, it is particularly interesting to compare forecasts generated by85

different models, using data from different locations,3 or data from different time periods (Yang, 2019).86

Current methods of solar forecast verification are mostly limited to using measures as indicators of goodness of87

forecasts. In other words, solar forecasters compare models based on some error metrics, and thus draw conclusions.88

Under this type of verification procedure, any conclusion is ambiguous in at least two ways: (1) it is unclear what89

the forecast objective is, and (2) it is unclear how the model of interest performs against other models that are not90

included in the study. These problems are described in the following two sub-sections, respectively.91

2.1. What is a good forecast?92

The word “objective” refers to goals given to a forecaster prior to verification. It is natural to think of the objective93

as “small RMSE,” “high skill score,” or “high economic value.” Nonetheless, these trivial objectives are often ill-94

motivated, conflicting, and inconsistent. Consequently, one may end up collecting a large, and possibly redundant, set95

of error metrics (as exemplified by the work of Zhang et al., 2015, in which a suite of 17 metrics was assembled after96

a lengthy stakeholder process involving members from both the meteorological and power systems communities). In97

other cases, new metrics are proposed to meet a specific objective (as exemplified by the work of Vallance et al., 2017,98

in which the ability to follow the ramps in irradiance transients is gauged by two new metrics).99

Assembling or introducing new members to a pool of error metrics is meaningful to the field of solar forecasting.100

By presenting a wide spectrum of error metrics, forecasters are able to choose freely the metrics that can “best”101

elaborate the strengths of their proposals. There are many studies that propose, contrast, and recommend error metrics102

to forecasters (e.g., Vallance et al., 2017; Zhang et al., 2015; Hoff et al., 2013; Beyer et al., 2009). However, despite103

the well-argued discussions, these works can rarely change another forecaster’s sentiment towards some specific104

metrics: for each argument that favors a metric, one may find a counter-argument against it (see Chai and Draxler,105

2014; Willmott and Matsuura, 2005).4 Furthermore, since there are countless publications that discuss and conclude106

that one metric is better than the other, it is not difficult at all to cite those articles to support any choice the author107

wishes to make (Chai and Draxler, 2014). The obvious consequence is a field with diverse, subjective, manipulative,108

and incoherent usage of error metrics. Nonetheless, this is not unique to the emerging field of solar forecasting.109

Historically, the lack of unified forecast verification procedure has been discussed countless times by many experts110

from other relatively mature fields (e.g., Murphy and Winkler, 1987; Armstrong, 2001; Fildes et al., 2008), but nothing111

seems to have changed (Gneiting, 2011).112

At this stage, it is essential to ask the question: “what is a good forecast?” It is known, a priori, that different
metrics favor different forecasts. To put this issue forward, a simulation study is presented. Suppose the hourly
clear-sky index, which is the ratio between the global horizontal irradiance (GHI) and clear sky GHI, in Desert Rock
(DRA), Nevada (36.624◦N, 116.019◦W) follows:

k∗t = 1 − z2
t , (1)

3Verification of forecasts, particularly those made by a numerical weather prediction (NWP) model, can be carried out spatially (see Gilleland
et al., 2010). Spatial averaging or spatial scale has a strong impact on forecast accuracy (Lorenz et al., 2016). However, in this work, we constrain
the discussions to forecast verification at single locations.

4During the initial stage of this study, the original idea was to propose a specific suite of metrics to the community. However, soon it became
obvious that it is literally impossible to make everyone agree. No consensus can be established on things such as whether we should favor MAE
or RSME, whether normalized metrics should be used, or whether we should normalize the RMSE using mean, maximum, 1000 W/m2, or square
root of second moment.
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Figure 1: A window of 100 simulated global horizontal irradiance data points (with zenith angle < 85◦). Forecasts generated by three forecasters
over the same window are overlaid. The novice uses 1-step-ahead clear-sky persistence, the optimist always uses 0.95 times of clear-sky irradiance
as forecasts, and the statistician uses the true conditional mean as forecasts.

k∗t denotes the clear-sky index at time t, and zt ∼ N(0, σ2
t ) follows GARCH(1,1) model, where GARCH is the

abbreviation of generalized autoregressive conditional heteroskedasticity, and parameterized as:

σ2
t = 0.15z2

t−1 + 0.3σ2
t−1 + 0.07. (2)

With initial values z0 = 0 and σ2
0 = 0.01, the GHI time series is simulated for 1000 daylight hours (herein defined113

to be data points with a zenith angle < 85◦), using the actual clear-sky GHI calculated for DRA in spring (Mar,114

Apr, May). Fig. 1 shows the first 100 data points in the simulated GHI time series. Based on the simulated time115

series, three forecasters are asked to generate forecasts. The novice has no skill to offer, and thus issues 1-step-ahead116

persistence forecasts on k∗, i.e., k̂∗t = k̂∗t−1. The optimist knows it is sunny in Nevada, and always uses k∗t = 0.95. The117

statistician has knowledge about the inherent model, and thus issues the true conditional mean, i.e., k̂∗t = 1 − σ2
t . A118

length-100 window of their forecasts is overlaid in Fig. 1. To measure the forecast accuracy, mean bias error (MBE),119

mean absolute error (MAE), and RMSE are used.5 The results are tabulated in Table 1. The results are inconclusive,120

because each forecaster is the best in terms of a particular error metric.121

Table 1: MBE, MAE, and RMSE, in W/m2, of the three forecasters in the simulation study. Column-wise best results are in bold.

Forecaster MBE MAE RMSE

Novice 0.60 68.83 115.79
Optimist 25.22 50.16 91.74
Statistician 1.38 54.77 86.96

The result of the above simulation study contradicts the common belief of knowing the inherent (physical or122

statistical) process is the sole key to making good forecasts. This contradiction is attributed to how we define the123

goodness of forecasts. To most solar forecasters, “good forecast” is equivalent to “small error.” However, the pitfalls124

of this definition become apparent whenever contradicting rankings of models materialize. In order to resolve such125

conflicts, we seek solutions from the field of meteorology, where forecast verification is well-studied.126

Murphy (1993) outlined three types of goodness that jointly define a good forecast:127

I. consistency—correspondence between forecasts and judgements;128

II. quality—correspondence between forecasts and observations; and129

III. value—incremental benefits of forecasts to users.130

5By surveying 1000 recent forecasting papers, Yang et al. (2018) found that there are about 20 commonly used metrics in solar forecasting, with
MBE, MAE, and RMSE being the most popular ones. They are hence used in the simulation study.
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2.1.1. Consistency131

The type I goodness,6 consistency, is quite an abstract concept—a forecast is consistent if it corresponds with the132

forecaster’s best judgement. Murphy (1993) argued that such a judgement must contain an element of uncertainty,133

because the forecaster’s knowledge on the forecasting task is necessarily incomplete. In probabilistic forecasting,134

consistency can be ensured by adopting strictly proper scoring rules (see Gneiting and Raftery, 2007), with that135

forecasters are rewarded with the best scores if and only if their forecasts correspond with their judgement (Murphy136

and Winkler, 1971). The Brier score and continuous ranked probability score (CRPS) frequently used in probabilistic137

solar forecasting are both strictly proper (van der Meer et al., 2018).138

On the other hand, in deterministic forecasting, one has to translate his probabilistic judgement through a statistical139

functional,7 T (F), which summarizes the forecast distribution, F. While the reader is referred to Gneiting (2011) for140

the formal definition, informally, the scoring function S is consistent if E[S ( f , x)] ≤ E[S (r, x)], for all f ∈ T (F), where141

f is an evaluation of the functional, r is any forecast, and x is a future observation. This definition implies that S is142

consistent if and only if any f ∈ T (F) is an optimal forecast under S . For example, if the mean value of a forecaster’s143

judgmental probability distribution is of interest, then RMSE is a consistent accuracy measure, because RMSE is144

minimized by forecasting the mean of the predictive distribution. In the above simulation study, the statistician145

provided the optimal forecasts under RMSE. The optimist, although winning the competition with respect to MAE,146

did not provide optimal forecasts under MAE since he did not issue forecasts according to the median values (MAE147

is minimized by forecasting the median of the predictive distribution).148

The underlying assumption of using consistency as a measure of goodness of forecasts is that the forecaster149

receives a directive in the form of a statistical functional to convert his probabilistic judgment to a deterministic150

forecast. For instance, the directive could be “forecast the mean of your probabilistic judgment.” Only then, a scoring151

rule can be identified as consistent if it is optimized by the chosen directive. However, Jolliffe (2008) noted that152

the definition for consistency is circular, namely, a forecaster could also start by choosing a scoring rule. Once the153

forecasts are made by optimizing the scoring rule, the consistent directive naturally follows.154

Consistency implies an important guideline in choosing accuracy measure during forecasting. For most statistical155

and machine learning models, the model parameter or weights are estimated or fitted according to some cost function.156

In this regard, a consistent error measure should be used during verification. For instance, ordinary least squares157

regression minimizes the sum of squared errors, hence, RMSE is an appropriate metric to report. This guideline158

is also applicable to statistical ensemble forecasting (also known as forecast combination), where forecasts from159

different component models are weighed. If the weights are optimized through MAE, then MAE should be used for160

verification.161

2.1.2. Quality162

The type II goodness, quality, is a familiar concept to all solar forecasters, as it refers to the correspondence163

between forecasts and observations. For example, MAE and RMSE are both measures that assess the overall accuracy164

of forecasts. Accuracy is an aspect of forecast quality. It can be interpreted through measures, which are quantitative.165

Besides accuracy, other aspects of forecast quality known to solar forecasters, such as bias, association, skill, or166

uncertainty, can be assessed through MBE, correlation, skill score, or variance. In forecast verification, the traditional167

way of comparing measures, may it be positively oriented (the larger, the better, such as skill score), negatively168

oriented (the smaller, the better, such as RMSE), or center oriented (the closer to a center value, the better, such as169

MBE), is known as the measure-oriented approach.170

As mentioned earlier, one disadvantage of using the measure-oriented approach is the subjectivity in choosing171

measures. Since choosing which measures to report is essentially a decision that is internal to a forecaster, it is172

by default unknown to anyone who is observing the forecast verification procedure from an external view point.173

In academia, forecasters are authors, whereas observers are editors, reviewers, and readers. If the optimist in the174

simulation study only reports MAE in his article, the observers will not be able to fully realize the underlying pitfalls175

of his forecasts, but to accept his proposal based on available information. While the simulation study might over-176

6This terminology follows Murphy (1993) and shall not to be confused with any other definitions.
7Any function of a probabilistic distribution is called a statistical functional. Examples of functionals include mean, median, or variance.

Generally, it is written as T (F), where F is a distribution.
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simplify the state-of-the-art solar forecasting scenarios, it is thought that when the forecasting model gets complex, it177

would be even more difficult to interpret the forecast results through a few measures.178

That said, if two forecasting methods yield the same MBE, RMSE, or skill score, are they equally good? The179

obvious answer is “no.” Measures only provide an overall assessment of forecast quality. Since error metrics are180

often computed based on a collection of samples (e.g., rolling hourly forecasts made over a year), this gives infinite181

ways to result in the same error-metric value. The reader is referred to Fig. 1 in Vallance et al. (2017) for an example182

on how two sets of drastically different forecasts can lead to the same RMSE. One solution frequently being used in183

the solar forecasting literature is to report the regime-dependent error metrics, i.e., to differentiate the errors by classes184

of prevailing situations. For instance, one can report errors for overcast-, clear-, and all-sky conditions, separately.185

Alternatively, one can also report errors for different times of day, different times of year, or different day types.186

However, the dimensionality of forecast verification scales with the number of classes, e.g., an RMSE table will187

become three, if three sky conditions are analyzed separately, or ten, if ten day types are defined. The error contingency188

table often gets out of control quickly. What has just been discussed is known as forecast diagnosis, which generally189

means the procedure to understand the composition of the overall quality.8190

Since both assessment and diagnosis of forecast quality are driven by the information embedded in (true out-191

of-sample) forecast–observation pairs, it is useful to define the total amount of information available to a forecaster192

during verification. By defining the entirety of information, a forecaster is no longer limited by the set of summary193

statistics. Stated differently, if the time order of forecast–observation pairs is not of interest, the joint distribution of194

forecast and observation can be used to study the skillfulness of the forecasts, since it contains all time-independent195

information relevant to forecast verification. This distribution-oriented approach to forecast verification was proposed196

in 1987 by Allan Murphy, together with Robert Winkler (Murphy and Winkler, 1987). It has gained high popularity197

in the field of meteorological forecasting, but is less known by solar forecasters.198

This particular framework needs to be discussed because it provides an alternative view to the traditional measure-199

oriented approach. It offers high flexibility in terms of accessing the information. In fact, the majority of graphical200

methods (e.g., Taylor diagram, target diagram, or error heat map) and accuracy measures (e.g., MBE, RMSE, or201

Kolmogorov–Smirnov test integral) known to solar forecasters are specific methods under this general framework.202

More importantly, the Murphy–Winkler framework is augmented by Bayes’ theorem, in that the joint distribution203

can be written equivalently as the product of marginal and conditional distributions, making the embedded infor-204

mation more accessible. Last but not least, the distribution-oriented approach establishes communication between205

forecast quality and accuracy measure. Aside from those aspects of forecast quality mentioned earlier, other aspects206

such as reliability, resolution, or discrimination can easily be defined and quantified. Whereas more details on the207

Murphy–Winkler framework are provided in Section 3, with a case study, it is noted that the framework is essential to208

understanding the goodness of forecasts.209

2.1.3. Value210

The type III goodness, value, relates to the benefits realized, or cost incurred, by individuals or organizations who211

use the forecasts during their decision making. Murphy (1993) pointed out that the forecasts by themselves possess no212

value, as they only acquire value through influencing the decisions made by their users. Most often, the value of solar213

forecasts is translated into and measured in monetary units, e.g., by reducing the RMSE of the forecasts by x W/m2,214

the owner of a photovoltaic (PV) system with energy storage gains an additional $y per year through optimizing the215

feed-in strategy of the system. For example, Law et al. (2016) discussed the benefits of improvements in irradiance216

forecasting for a concentrated solar thermal (CST) power plant in this context. An alternative view was given by217

Antonanzas et al. (2017) where they compared the profit from different forecasting methods with respect to that from218

a perfect forecast.219

Naturally, such benefits or cost would depend on the characteristics of a particular decision-making problem.220

Thus, the type III goodness is not under the control of forecasters, but is determined and appreciated by decision221

makers. Furthermore, this goodness of forecast is non-transferable by default. That is, one cannot simply scale the222

value realized by others, using the characteristics of the problem at hand. Because of the different courses of action223

and payoff structures available to different decision makers, there is little reason to assume an ex post value would224

8A related issue is how to decompose these overall quality metrics. Some options are will be discussed in a later section.
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apply in an ex ante study. A good forecasting strategy that creates high value to some users might not be appreciated225

by others.226

That said, it is believed that for a fixed and well-defined decision-making problem, the mapping between types227

I and II goodness and type III goodness is monotone. In other words, higher forecast quality corresponds to higher228

value. This gives a forecaster no motivation to issue any suboptimal forecast, and a forecaster can do no better than229

providing the optimal forecasts (or forecasts to the best of his capability).230

To give a perspective on “well-defined decision-making problem,” the case of the Australian National Electricity231

Market (NEM) is considered. In NEM, conventional generators submit bid stacks every five minutes to the Australian232

Energy Market Operator, that runs a linear program to see how far up the stacks they have to proceed to meet their fore-233

cast net load (regional load forecast minus forecast of domestic and commercial PV generation). If the conventional234

generators miss their promised amount by more than a given tolerance, either above or below, they are penalized.235

There is presently a dramatic expansion in solar farm construction and these installations are price takers, i.e., not236

involved in making the spot market price. Hence, the solar plants would not be fined for poor forecasts, but can be237

curtailed when necessary. Under this regime, the decision-making problem might not be well-defined, as the plant238

owners could always use the highest possible power generation as forecasts, since there is no monetary penalty on239

over-forecast. To make fair play in a new regime, the solar plants could be penalized accordingly, if they do not meet240

their forecasts. Given the new payoff structure, the cost of over-forecasts is equivalent to the cost of running spinning241

reserve to fulfill the difference between the forecast and the generated solar energy, and the cost of under-forecasts is242

the lost revenue that would have been generated if that extra potential energy were sold at the prevailing spot price243

at the time. In this case, if the two costs are the same, then the decision-making problem is well-defined, and the244

forecasters should submit their optimized forecasts truthfully.245

2.2. The skill score246

The three types of goodness defined by Murphy (1993) provide a clear objective during forecast verification—247

while maintaining consistency, one should aim at maximizing quality. However, having a well-defined objective only248

helps a forecaster to diagnose and thus make conclusions based on his own forecasting experiment. As the literature249

expands rapidly, it is unrealistic to expand the scope of the experiment simultaneously, that is, to include all previously250

proposed methods as benchmarks. The obvious reason is that the data (information) available to one forecaster might251

not be available to others, similarly, not all types of information available at one location or time is available at other252

places or times. Thus, to ensure the field progresses, the community is forced to make comparison among different253

research works, based on the reported measures of forecast quality.254

2.2.1. A false sense of comparability255

The variability of solar irradiance depends on geographical location and timescale. Even if the same forecast-256

generating strategy is employed, the hourly forecasts made for a location with predominant clear-sky conditions will257

have a significantly smaller RMSE as compared to 10-min forecasts made for a site with a tropical climate, where258

cloud formation is rapid and difficult to predict. Hence, if one wishes to compare forecast skills, some form of scaling259

(normalization) is needed for scale-dependent errors, such as MAE or RMSE. In a recent review paper, Blaga et al.260

(2019) used the normalized RMSE (nRMSE) as a basis of such comparison.261

The particular form of normalization considered in Blaga et al. (2019) is through mean of observations, i.e.,262

nRMSE is computed by dividing RMSE with the mean of observations. Whereas the final conclusion—nRMSE263

reported in the solar forecasting literature is getting smaller over the years—is factual, the methodology (directly264

comparing nRMSE) used by the authors can be misleading. “Researchers are getting better at forecasting solar”265

is a priori knowledge, and it is easy to find evidence supporting that.9 However, nRMSE gives a false sense of266

comparability, which cannot be used to justify one forecaster has better skill than the other.267

9It is possible to invoke the law of large numbers (LLN) to justify the conclusion. LLN states that the sample average converges in probability
to the expectation. If one treats the reported nRMSE as a random variable, by comparing the large-sample mean of nRMSE reported in earlier 2010
to that reported in the recent years, it is possible to make a conclusion that the expectation of nRMSE has reduced. The underlying assumption is
that the nRMSEs reported are independently produced and sufficiently span the multi-dimensional sample space (e.g., climate condition, weather
condition, timescale, forecast method). Notwithstanding, the same conclusion can be drawn using RMSE, MAE, nMAE, or any other error measure.
This does not mean that all of these measures can be used to directly compare the skill of forecasters.
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As mentioned earlier, forecast error is tightly linked to predictability, which is essentially related to variability and268

uncertainty. Equivalently, we can say that conditions with higher variability and uncertainty are harder to forecast,269

and thus one should expect larger errors. In forecasting, variability and uncertainty are often quantified by step change270

and variance, respectively. Since the ultimate aim is to have a measure that quantifies forecast skill, its dependency271

on variability and uncertainty has to be minimized if not removed completely. It is now clear that mean-normalized272

nRMSE cannot be used to compare forecast skills, because the mean is related to neither variability nor uncertainty.273

The same arguments can be applied to range-normalized nRMSE, max-normalized nRMSE, capacity-normalized274

nRMSE, and the various versions of nMAE.275

2.2.2. On the propagation of normalized accuracy measures in solar forecasting276

Normalized accuracy measures are popular in solar forecasting (Blaga et al., 2019). This contrasts the field of277

meteorology, where normalized accuracy measures are rarely used. For instance, in the 267-page book “Forecast278

Verification: A Practioner’s Guide in Atmospheric Science” by Jolliffe and Stephenson (2012), there is not a single279

sentence that discusses normalized accuracy measures. Similarly, no trace of normalized accuracy measures can be280

found in Hyndman and Koehler (2006), in which the accuracy measures are discussed in the context of general-281

purpose univariate time series forecasting. Hence, a probable explanation on why normalized accuracy measures is so282

popular in solar forecasting is given next.283

The notion of normalization develops naturally when the forecast quantities are at different scales. On this point,284

the class of accuracy measures based on percentage errors, such as the mean absolute percentage error (MAPE), needs285

to be discussed. Measures based on percentage errors are not quite feasible in solar forecasting since the irradiance286

and PV-generated power is near zero during early mornings and late afternoons, or when the clouds move in. Although287

the early morning and late afternoon cases can be trimmed with a zenith-angle filter before verification, a few missed288

forecasts on large irradiance swings during mid-day are enough to result in a very large MAPE. Therefore, to allow289

the forecast errors to be interpreted as a (not-so-crazy) percentage, the normalization is taken out of the summation,290

i.e., normalization is performed after aggregation.291

Normalized accuracy measures are used in wind forecasting, a more developed sub-domain of energy forecasting.292

In an effort to standardize metric usage in wind forecasting, Madsen et al. (2005) noted that the purpose of using293

normalized accuracy measures is to produce results independent of wind farm sizes. In addition, the authors rec-294

ommended normalization by the installed capacity or mean observation. At that time (2005), published studies on295

solar forecasting were almost non-existent. When the field of solar forecasting started to bloom in the early 2010s,296

such normalization became default for solar forecasters, to whom wind forecasting was the most relevant literature to297

follow.298

A compelling reason why normalized accuracy metrics are frequently used in solar (or wind) forecasting is that299

the typical end users (or “stakeholders”) are typically electric engineers, business analysts or financial experts. These300

professionals are very familiar with percents, but not with a solar radiation unit such as W/m2 or a power unit such301

as MW. From this standpoint, the use of normalization is essentially dictated by the necessity for the end users to302

understand and correctly use the forecast results. Nonetheless, grid operators almost never compare their forecasts303

across seasons, time scales, and let alone to forecasts of other grid operators. Therefore, in that context, the choice304

of normalized accuracy metrics is for convenience and internal communications, since a percentage metric is more305

accessible to a non-technical audience (decision-makers) than a MW metric. Since for grid operators the normalizing306

quantity, i.e. the denominator, is either constant (peak load) or similar (average load), the normalization does not307

affect the ranking of forecast accuracy. The grid operator preference for normalized accuracy metrics in their “small308

world” should not be construed as a motivation to adopt normalized error metrics in the academic community as we309

should strive for global inter-comparability of forecast quality.310

This section was intended to motivate why normalized accuracy has become prevalent in the academic community.311

But as discussed in Section 4.2, we believe that normalized accuracy measures are inferior to the skill score as they312

do not appropriate consider variability.313

2.2.3. Problems with the skill score314

Since normalized accuracy measures cannot be used to compare forecasts made at different locations and timescales,
an alternative has to be sought. In modern solar forecasting, the first attempt to address the problem of comparability
was made by Carlos Coimbra and his former student Ricardo Marquez in several conference papers around 2011 (e.g.,
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Marquez and Coimbra, 2011), a journal version (Marquez and Coimbra, 2013), and a book chapter published in 2013
(Coimbra et al., 2013). In those documents, a well-known concept in meteorological forecasting called skill score was
introduced to the young field of solar forecasting. In the field of meteorology, the skill score, s, can be defined based
on some measure of accuracy A, namely,

s =
A f − Ar

Ap − Ar
, (3)

where A f , Ap, and Ar are the accuracy of the forecasts of interest, accuracy of the perfect forecasts, and accuracy of
the reference forecasts, respectively (Murphy, 1988). For instance, s based on RMSE is

s = 1 −
RMSE( f , x)
RMSE(r, x)

, (4)

where f , r, and x are forecasts of interest, reference forecasts, and observations, respectively.10 For N samples,

RMSE( f , x) =

√√√
1
N

N∑
t=1

( ft − xt)2, (5)

RMSE(r, x) =

√√√
1
N

N∑
t=1

(rt − xt)2. (6)

Skill score s is often written in percentage, representing the percentage improvements in accuracy of the forecasts over315

the reference forecasts. If s > 0, the forecasts of interest have a smaller RMSE than that of the reference forecasts,316

otherwise, s ≤ 0 indicates that the model of interest fails to outperform the reference forecasts. There are, however,317

two problems with using s to compare forecasts: (1) the choice of accuracy measure can be arbitrary, and (2) the318

choice of the reference forecasting model can be arbitrary.319

The first problem can be understood with a simple example. The computation of s requires a measure of forecast320

accuracy, A, which is based on a scoring function. Depending on the choice of A, s can be dramatically different. For321

instance, suppose RMSE(r, x) = 200 W/m2 and RMSE( f , x) = 100 W/m2, then sRMSE = 0.5. However, when the mean322

square error (MSE) is used, sMSE = 1 − (1 − sRMSE)2 is boosted to 0.75. Whereas the conversion between sRMSE and323

sMSE is straightforward, s calculated based on other metrics, such as MAE, would be different, and cannot be inferred324

from sRMSE or sMSE. Hence, there is no obvious solution to this but to consider a consensus-based approach—at the325

moment, RMSE is the most common form of A in the literature (Blaga et al., 2019; Yang et al., 2018), and thus should326

be used in skill score computation (In a later section, this choice will be discussed further). Hereafter, the symbol s327

only denotes sRMSE, unless otherwise stated.328

One remedy to the second problem is to use a universally-accepted naïve reference model, so that s can be used—329

with appropriate caveats—to compare the accuracy of forecasts made across different locations or time periods. Skill330

score is built upon the notion that the “no skill” reference forecasts should sufficiently represent the difficulty of the331

forecasting scenario. In business forecasting, random walk is often used as the reference, and the relative performance332

of the model of interest is gauged using the Theil’s U statistic, a concept similar to skill score (Makridakis et al., 2008).333

In meteorology, the so-called “climatology” is often used as the naïve reference (Jolliffe and Stephenson, 2012).11
334

10It should be noted that Eq (4) assumes the RMSE of the perfect forecast accuracy, Ap, is 0. However, in almost all statistical forecasting
frameworks, the models would assume some unpredictable white noise, i.e., non-zero RMSE even if a model perfectly describes the data-generating
process. Hence, the assumption here is that the Ap � Ar , so that it can be neglected.

11There are different types of climatology. Murphy (1988) considered single-valued internal climatology, multiple-valued internal climatology,
single-valued external climatology, and multiple-valued external climatology, each gives a different skill score expression. The definitions of
“internal” and “external” are based on whether the reference forecasts are derived from experimental periods or historical periods. Given one
year of irradiance observations, the daytime sample mean, E(x), could be considered as the single-valued internal climatology forecasts. Under
this definition, the MSE of climatology is simply the sample variance, V(x) = E([x − E(x)]2). It might be however argued that the single-valued
climatology would be inappropriate when the forecasts of interest are to be evaluated over a time period longer than a month or a season (Murphy,
1988).
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In deterministic solar forecasting, the most popular naïve reference model is the clear-sky adjusted persistence, or335

simply, clear-sky persistence. Clear-sky persistence is conceptually no different from the seasonal naïve method336

described in Makridakis et al. (2008). More precisely, the clear-sky irradiance can effectively describe both seasonal337

cycles (a yearly cycle and a daily cycle) in an irradiance time series. Details of the clear-sky persistence baseline, its338

alternatives, as well as other important implementation aspects are addressed at length in Section 4 and Appendix A.339

For now, we note that the 1-step-ahead clear-sky persistence forecast for time t is rt = xt−1 · ct/ct−1, where c is the340

clear-sky expectation.12
341

2.3. The Coimbra skill score342

Skill score is not limited to verification of deterministic forecasts of continuous random variable. It is also used in343

verification of deterministic forecasts of binary events (e.g, Gilbert skill score or Doolittle skill score), multi-category344

events (e.g., Gandin and Murphy score), and probabilistic forecast verification (e.g., Brier skill score or CRPS skill345

score). While the reader is referred to Jolliffe and Stephenson (2012) for more details on skill score, the version346

proposed by Marquez and Coimbra (2011) needs to be discussed. In deterministic solar forecasting, their version is347

the only notable alternative to the skill score defined in Eq. (3), we denote it as sCoimbra.348

Marquez and Coimbra (2011) proposed their skill score based on the concept of “uncertainty” (U) and “variability”
(V):

sCoimbra =1 −
U
V
, (7)

where

U =

√√√
1
N

N∑
t=1

(
ft − xt

ct

)2

, (8)

V =

√√√
1
N

N∑
t=1

(
xt

ct
−

xt−1

ct−1

)2

, (9)

and f , x, and c are forecast, observation, and clear-sky expectation, respectively. The authors claimed that the ratio349

between U and V can be approximated by the ratio of the RMSE of the model of interest and the RMSE of clear-sky350

persistence, i.e., sCoimbra ≈ 1 − RMSE( f , x)/RMSE(r, x) = s. However, no detailed theoretical support was given351

in the different versions of the proposal (Marquez and Coimbra, 2011, 2013; Coimbra et al., 2013). Instead, the352

approximation was demonstrated empirically, through the results of several time series models.353

By comparing sCoimbra to s defined in Eq. (4), it is clear that the two skill scores generally should not be used354

interchangeably. In fact, s is the RMSE skill score of irradiance forecasts, whereas sCoimbra is the RMSE skill score355

of clear-sky index forecasts. Stated differently, the two scores verify different forecast quantities—the former verifies356

irradiance forecasts, and the latter verifies clear-sky index forecasts. Appendix B shows that in order for the two scores357

to be approximately equal, both the clear-sky persistence and the model of interest need to have homoscedastic error,358

that is, the variances of the forecast errors are independent of the magnitude of clear-sky irradiance. This is, however,359

unlikely owing to the bell-shaped transient of irradiance. Hence, they should not be treated as alternatives.360

2.4. Section summary361

This section has discussed and put forward quite a few new concepts to deterministic solar forecast verification. In362

general, there are two approaches for forecast verification, namely, the measure-oriented approach and the distribution-363

oriented approach. The goodness of forecasts contains three elements: (1) consistency, (2) quality, and (3) value.364

Particularly interesting is that the distribution-oriented approach could help forecasters to assess the quality of their365

12The word “expectation” refers to the fact that true clear-sky irradiance is always unknown, and only the estimates from a so-called “clear-sky
model” are available. One should not confuse the current usage of the word with the usage in “statistical expectation.”
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forecasts in a systematic way, by relating various aspects of forecast quality to different accuracy measures, so that366

they can be interpreted. This will be discussed further in Section 3.367

Whereas the distribution-oriented approach is primarily recommended for forecast diagnosis, i.e., to be used within368

a forecasting case study, the skill score is recommended for cross-work forecast comparison. It is important to note369

that the measure-oriented and distribution-oriented approaches are complementary, not substitutive. Skill score is370

computed based on the accuracy measure of a reference model that can sufficiently describe the difficulty (variability371

and uncertainty) of a forecast situation. It gauges the overall skillfulness of a forecaster. The RMSE skill score372

computed based on the clear-sky persistence model and its implementation should be mandated and standardized, see373

Section 4.374

3. Distribution-oriented approach for forecast verification375

The distribution-oriented forecast verification framework is quite general. Before one starts to wonder what joint376

distribution13 has to do with forecast verification, as a forecaster, most likely he or she has already used this framework.377

It is common to use a forecast–observation scatter plot to check forecast quality. One may draw some conclusions378

based on whether the point cloud is centered on the identity line, or how dispersed the scatter points are. In other cases,379

a forecaster may wish to check how the scatter points are distributed along the x-axis, or whether the spread of forecasts380

vary for different observation ranges. In fact, most forecast accuracy quantification—visually or through accuracy381

measures—are just summaries of the joint distributions, or equivalently, the marginal and conditional distributions.382

The relationship between joint, marginal, and conditional distributions of two random variables can be expressed383

using Bayes’ theorem. When these variables are the forecast and the observations, the same relationship is referred to384

as Murphy–Winkler factorization in meteorology.385

Murphy–Winkler factorizations are:

p( f , x) = p(x| f )p( f ), (10)
p( f , x) = p( f |x)p(x), (11)

where p denotes distribution, f and x represent forecasts and observations, respectively. Eq. (10) is called the386

calibration–refinement factorization, whereas Eq. (11) is called the likelihood–base rate factorization. The naming387

convention is quite intuitive. For example, the p(x| f ) term in Eq. (10) describes the spread of the observations, given388

a particular forecast. For a good correspondence, the forecast is said to be calibrated or reliable. Mathematically, the389

forecasts are perfectly calibrated if E(x| f ) =
∫

xp(x| f )d f = f . The reader is referred to Table 2 for an interpretation390

of other conditional and marginal distributions, and Murphy (1997) for a list of aspects of forecast quality.391

Verifying the above conditional and marginal distributions is equivalent to verifying the joint distribution. For
instance, given two sets of forecasts, f1 and f2, by comparing p(x| f1) and p(x| f2), one can conclude whether one set of
forecasts is more reliable than the other, see Moskaitis (2008); Murphy et al. (1989) for case studies. Whereas linking
the forecast distributions to aspects of forecast quality provides forecasters with insights regarding their forecasts, it
would be easier to interpret if the different aspects of forecast quality can be quantified using measures. For instance,
consider the well-known bias–variance decomposition of MSE:

MSE =

∫∫
( f − x)2 p( f , x)d f dx

=E[( f − x)2]

=V( f − x) + [E( f ) − E(x)]2

=

marginal dist.︷         ︸︸         ︷
V( f ) + V(x)−

association︷      ︸︸      ︷
2cov( f , x) +

unconditional bias︷            ︸︸            ︷
[E( f ) − E(x)]2, (12)

13Formally, we call a function p(x, y) the joint distribution of random variables X and Y if p(x, y) ≥ 0, ∀(x, y);
∫ ∞
−∞

∫ ∞
−∞

p(x, y)dxdy = 1; and for
any setA ⊂ R × R, P[(X,Y) ∈ A] =

∫∫
A

p(x, y)dxdy, P[(X,Y) ∈ A] denotes the probability of (X,Y) in setA (Wasserman, 2013).
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Table 2: Definition, interpretation, and quantification of Murphy–Winkler factorizations (Jolliffe and Stephenson, 2012; Murphy and Winkler,
1987).

distribution definition interpretation (some specific methods of) quantification

p(x| f ) (related to)
calibration

A set of deterministic forecasts is perfectly calibrated if E(x| f ) =∫
xp(x| f )d f = f .

(1) calibration, reliability, or type 1 conditional bias: E f [ f −
E(x| f )]2;
(2) resolution: E f [E(x| f ) − E(x)]2.

p( f ) (related to)
refinement,
or sharpness

Refinement or sharpness is an aspect that usually applies only to
probabilistic forecasts (Murphy, 1997). In deterministic forecast
verification, if a forecaster produces the same forecast all the time,
it is said to be completely unrefined. However, the complete re-
finement is difficult to define for deterministic forecasting (Murphy
et al., 1989), but p( f ) has to be equal to p(x) for perfect forecasts.

(1) Kolmogorov–Smirnov test statistic: max |F( f ) − F(x)|;
(2) earth mover’s distance or first Wasserstein distance: the
area between the two ECDFs. (The formal definition is tech-
nical and thus omitted.)

p( f |x) likelihood If p( f |x) is zero for all values x but one, the forecast is perfectly
discriminatory. If p( f |x) is the same for all values of x, the forecast
is not at all discriminatory.

(1) discrimination 1, or type 2 conditional bias: Ex[x −
E( f |x)]2;
(2) discrimination 2, or simply discrimination: Ex[E( f |x) −
E( f )]2.

p(x) uncertainty,
or base rate

If p(x) is a fairly peaked distribution, the scenario has relatively
small uncertainty (and thus easier to forecast) as compared to a
scenario where p(x) is fairly uniform.

(1) variance: V(x);

(2) kurtosis:
E[(x − E(x))4](
E[(x − E(x))2]

)2 .

where the overhead braces show the representation of each term. In this decomposition, V( f ) and V(x) are variances392

of forecasts and observations, respectively. Their values can be used as a proxy for measuring the similarity between393

p( f ) and p(x). If the forecasts were perfect, the two marginal distributions would be exactly the same, so would the394

variances.14 Similarly, the cov( f , x) term can be written as correlation, namely,
√
V( f )V(x) ·cor( f , x), which denotes395

the association between forecasts and observations. Lastly, the [E( f ) − E(x)]2 term represents the squared uncondi-396

tional bias, i.e., MBE2. This example illustrates the complementarity between the measure-oriented approach (e.g.,397

verification using MBE, correlation, or variance of the forecasts) and the distribution-oriented approach (analyzing the398

joint, conditional, and marginal distributions of forecasts and observations), see Appendix C for further information.399

Besides the bias–variance decomposition, MSE can also be decomposed following the calibration–refinement and
likelihood–base rate factorizations:

MSE =V(x) +

type 1 conditional bias︷              ︸︸              ︷
E f [ f − E(x| f )]2 −

resolution︷                  ︸︸                  ︷
E f [E(x| f ) − E(x)]2, (13)

MSE =V( f ) +

type 2 conditional bias︷              ︸︸              ︷
Ex[x − E( f |x)]2 −

discrimination︷                  ︸︸                  ︷
Ex[E( f |x) − E( f )]2 . (14)

The derivation of these decompositions are shown in Moskaitis (2008). As indicated in the equation, different terms400

in the decomposed forms explain different aspects of forecast quality.401

Type 1 conditional bias, E f [ f − E(x| f )]2, indicates the degree of correspondence between the mean observation402

given a particular forecast, i.e., calibration or reliability. Recall perfect calibration is when E(x| f ) = f , so the smaller403

this term the better. Resolution accounts for the difference between conditional and unconditional mean observation,404

which is reflected by E f [E(x| f ) − E(x)]2. If E(x| f ) = E(x), it means the data samples have no resolution. It is desired405

to have the generated forecasts to be followed by different observations (so that the forecasts are meaningful), this406

term should be maximized, which is also reflected by the negative sign in front of the term. Type 2 conditional bias,407

Ex[x−E( f |x)]2, indicates the degree of correspondence between the mean forecast given a particular observation and408

the observation. Naturally, this term should be as small as possible. Lastly, discrimination denotes the difference409

between conditional and unconditional mean forecast, i.e., Ex[E( f |x) − E( f )]2, which indicates how forecasts are410

differentiated for different observation values. This terms needs to be maximized.411

The numerical evaluation of these decomposed factors can be difficult. When Murphy and Winkler (1987) pro-412

posed these decompositions, a binary x was used, which greatly simplifies the computation. In Moskaitis (2008),413

the evaluation was performed by discretizing the continuous random variable—tropical cyclone intensity—into bins.414

14However, having identical variances does not imply identical distributions; and having identical distributions does not imply the forecasts are
perfect.

12



0

300

600

900

1200

0 300 600 900 1200

Observed GHI [W/m2]

F
or

ec
as

t G
H

I [
W

/m
2 ]

(a)

0

300

600

900

1200

0 300 600 900 1200

Observed GHI [W/m2]

F
or

ec
as

t G
H

I [
W

/m
2 ]

(b)

Figure 2: Joint and marginal distributions of 24-h-ahead hourly NAM forecasts and SURFRAD observations at (a) Desert Rock, Nevada (36.624◦N,
116.019◦W), and (b) Penn. State Univ., Pennsylvania (40.720◦N, 77.931◦W), from 2015 to 2016. The contour lines show the 2d kernel densities.

Recently, Yang and Perez (2019) used kernel conditional density estimation (KCDE) to estimate the conditional ex-415

pectations, namely, E(x| f ) and E( f |x), which removes the dependency on binning. The code for the KCDE-based416

approach is available in the supplementary material of that paper.417

In contrast to numerical evaluation of Eqs. (13) and (14), visual inspection is more straightforward and enables a418

forecaster to appreciate the properties of the forecasts in great detail. In general, visualizing the error distribution is419

a powerful way of communicating the performance of a model. In line with the Murphy–Winkler factorizations, an420

x– f scatter plot displays the joint distribution between observations and forecasts, allows for visualizing the marginal421

distributions as well as specific conditional distributions.422

To exemplify the forecast verification procedure discussed in this section, a case study is presented. Fig. 2 shows423

the joint and marginal distributions of 24-h-ahead hourly forecasts of global horizontal irradiance (GHI) produced424

by North American Mesoscale (NAM) forecast system against the observations collected by the Surface Radiation425

Budget Network (SURFRAD), at two locations with distinct climate over a period of two years. Whereas the joint426

distribution at the Desert Rock (DRA) station has approximately equal probabilities on both sides of the diagonal,427

the forecasts at the Penn. State Univ. (PSU) station over-predict GHI, i.e., higher probability is concentrated above428

the diagonal, where f > x. A closer examination of the 2d kernel density contours reveals that the NAM forecasts429

at DRA drift slightly below the identity line for high-irradiance conditions. For mid- and low-irradiance conditions430

at DRA, the forecasts are slightly above the identity line. This observation warrants an irradiance-condition-based431

post-processing treatment. Similar observations could be made for forecasts at PSU.432

The histograms shown in Fig. 2 denote marginal distributions, p( f ) (on the right) and p(x) (on the top). Since433

the shape of the histograms depends largely on bin width, different choices may affect the forecaster’s judgement434

differently. In this regard, overlaying the empirical cumulative distribution functions (ECDFs) of f and x could be435

useful at times. Fig. 3 demonstrates such plots using the same data. Visually, the ECDFs of forecasts and observations436

at DRA align better than those at PSU. At PSU, f is stochastically greater than x (the ECDF of f lies below and hence437

to the right of that for x). Formally, the Kolmogorov–Smirnov (KS) test computes the statistic Dn = max |Fn( f ) −438

Fn(x)|, i.e., the maximum absolute distance between the ECDFs of forecasts and observations. In the present case, KS439

tests conducted at the two stations both reject the null hypothesis—two distributions are equal—at a significance level440

of 0.05.441
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Figure 3: Marginal distributions of forecasts and observations described in Fig. 2.

Table 3: Bias–variance decomposition (see Eq. 12) and Murphy–Winkler factorization (see, Eqs. 13 and 14) of 1–24-h-ahead NAM ( f ) against
SURFRAD GHI (x), at DRA and PSU stations over 2015–2016. For interpretability, all metrics are written in squared form, so that the bases have
the unit of W/m2, except for correlation ρ, which is dimensionless.

MSE V(x) V( f ) ρ( f , x) [E( f ) − E(x)]2 E f [ f − Ê(x| f )]2 E f [Ê(x| f ) − E(x)]2 Ex[xg − Ê( f |x)]2 Ex[Ê( f |x) − E( f )]2

DRA 108.222 297.972 288.752 0.94 22.652 28.002 279.002 38.822 270.462

PSU 154.992 269.892 275.402 0.85 41.672 64.362 230.012 61.172 235.622

As compared to joint and marginal distributions, the visualization of conditional distribution is more challenging.442

Whereas some authors plot the individual quantiles or use box plots to represent the distributions, ridgeline plots are443

employed here, see Fig. 4. In this plot, p(x| f ) and p( f |x) at both stations are represented using overlapping lines,444

which create the impression of a mountain range. Fig. 4 (a) and (c) reveal p(x| f ) is mostly centered on the forecast445

value, i.e., E(x| f ) is close to f , indicating small type 1 conditional bias in NAM forecasts. On the other hand, type 2446

conditional bias is found to be significant for high values of x, see p( f |x) for x = 1050 W/m2 in Fig. 4 (b) and (d).447

The distribution-oriented verification technique is often complemented with summary measures of the different448

aspects of forecast quality. Table 3 shows the quantification of these aspects using the bias–variance decomposition449

and Murphy–Winkler factorization, as stated in Eqs. (12), (13), and (14). Note that the decomposed terms listed in450

the table do not add up exactly to MSE, due to the uncertainty introduced during KCDE. Such discrepancy is however451

small, and thus does not affect our analysis. In terms of correlation, a higher ρ = 0.94 is observed at DRA as compared452

to 0.85 at PSU, indicating a better association between forecasts and observations at DRA. The square of unconditional453

bias, [E( f ) − E(x)]2, is also significantly smaller at DRA, agreeing with the earlier observation made using the joint454

distribution plots. Since smaller type 1 conditional bias, E f [ f − Ê(x| f )]2, means higher calibration—the forecasts at455

DRA are more reliable than those at PSU. Similarly, smaller type 2 conditional bias, higher resolution, and higher456

discrimination observed at DRA all lead to the conclusion that the NAM forecasts at DRA have better forecast quality457

than those at PSU.458

Based on the case study above, it is evident that the distribution-oriented forecast verification is useful in assisting459

forecasters to make informed decision based on forecast quality. In other cases, the same methodology can be applied460

to compare forecasts made using different methods, which provides more information than using MSE values alone.461

This verification procedure leads to more meaningful conclusions than statements such as “the MSE at location A462

is smaller than that at location B, and thus the forecasts at location A are better”. That said, should one wish to463

examine the relative accuracy gain from the reference method, the quantification of aspects of forecast quality can be464

carried out with the reference forecasts, as exemplified in Table 4. Comparing the two tables, one thing certain is that465

in the case of NAM, the NWP-based model dominates persistence in all aspects except for the unconditional bias.466

Nonetheless, such unconditional bias could be easily trimmed with regression-based post-processing, and thus does467

not affect one’s confidence in opting for the NAM model.468
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Figure 4: Conditional distributions of 24-h-ahead hourly NAM forecasts and SURFRAD observations. p(x| f ) are shown in (a) and (c) for Desert
Rock, Nevada (36.624◦N, 116.019◦W) and Penn. State Univ., Pennsylvania (40.720◦N, 77.931◦W), respectively. p( f |x) are shown in (b) and (d)
for the two stations, respectively.

4. Recommendations and practical concerns469

The traditional measure-oriented approach is complemented by the distribution-oriented approach, which can470

reflect different aspects of forecast quality and help forecasters to diagnose their forecasts. However, at the end of471

the day, a “one-number summary” of forecasts is still highly desirable, especially when scientists bring their forecasts472

to non-technical personnel, e.g., the sales team, politicians, or the general public. Therefore, in this section, some473

recommendations and practical concerns regarding the use of skill score are discussed.474
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Table 4: Same as Table 3, but tabulating the forecast quality of 1–24-h-ahead persistence forecasts.

MSE V(x) V( f ) ρ( f , x) [E( f ) − E(x)]2 E f [ f − Ê(x| f )]2 E f [Ê(x| f ) − E(x)]2 Ex[xg − Ê( f |x)]2 Ex[Ê( f |x) − E( f )]2

DRA 151.832 297.972 297.392 0.87 0.522 42.432 259.752 42.892 259.102

PSU 220.972 269.892 269.752 0.66 1.142 94.622 181.542 95.142 181.502

4.1. MBE, MAE, or RMSE?475

Skill score belongs to the class of relative measures (Hyndman and Koehler, 2006).15 In that, a scale-dependent476

measure is needed for its computation. Since MBE, MAE, and RMSE are the most popular metrics at the moment477

(Yang et al., 2018), one of them will be recommended for skill score computation.478

MBE is defined as E( f −x), or E( f )−E(x). This is different from how bias is described in some statistics literature,479

namely, E(x− f ), which originates from how a predictive model is constructed (see Makridakis et al., 2008).16 Defining480

the MBE to be “forecast minus observation” is more natural for solar forecasting, since an over-prediction (forecasts481

are, on average, higher than observations) corresponds to a positive MBE, and an under-prediction corresponds to a482

negative MBE. MBE describes unconditional bias, and most statistical forecasting methods have MBE→ 0. State-of-483

the-art operational solar forecasts would have some form of bias correction implemented, e.g., model output statistics484

(MOS). Therefore, having small MBE is more of a baseline requirement, rather than a credit-worthy feature among485

state-of-the-art forecasts. Furthermore, the MBE for the reference forecasts, clear-sky persistence, has an expectation486

of zero, and thus makes the skill score undefined. To that end, MBE is unsuitable for skill score computation.487

The main difference between MAE, defined as E(| f − x|), and RMSE, defined as
√
E[( f − x)2], is that the latter488

penalizes large errors while the former gives the same weight to all errors. Since large errors are particularly concern-489

ing for grid integration of solar power (e.g., a loss of load becomes more likely), RMSE is more suitable when a set490

of forecasts contain several large errors, which is usually the case for solar forecasts. On this point, the percentage491

improvement in RMSE, in the form of s, might attract more interests than the MAE skill score.492

The second reason for using the RMSE skill score is related to the distribution-oriented forecast verification.493

The Murphy–Winkler MSE factorization has been recommended for forecast diagnosis in the previous section. As494

a result, RMSE values become readily available after the various aspects of forecast quality are quantified. It must495

be highlighted that in the field of meteorology, and many other fields such as statistics, researchers generally do not496

distinguish the use of words “RMSE” and “MSE” in their writing (Jolliffe and Stephenson, 2012), since RMSE and497

MSE differ only by a square root. Nonetheless, they should not be mixed up during skill score computation, recall the498

example given in Section 2.2.3.499

Lastly, the popularity of RMSE is higher than that of MAE, not only in solar forecasting, but in other forecasting500

domains as well. Gneiting (2011) found that the usage of RMSE in four related domains, namely, forecasting, statis-501

tics, econometrics, and meteorology, dominates as compared to MAE. Whereas the precise reasons are unknown, it is502

hypothesized that consistency might be one of the main reasons, since there are more models minimizing MSE than503

minimizing MAE. In additional, squares are more amenable than absolute values in many mathematical operation504

(Chai and Draxler, 2014). Hence, for this and the above reasons, RMSE skill score is recommended in deterministic505

solar forecasting.506

4.2. Normalized versus raw measures507

Although skill scores computed using the normalized and raw measures are identical (as long as the normalization508

value is computed based on observations), it is of interest to discuss the various issues related to normalization. There509

are four main ways to normalize the RMSE in irradiance forecasting, namely, by mean, by maximum,17 by 1000510

W/m2,18 or by the square root of second moment, i.e.,
√
E(x2).19 On the other hand, normalization by the installed511

capacity is the most common approach in PV power forecasting.512

15One should distinguish relative measure from measure of relative error. The former performs division after the primary measure is computed,
i.e., E[S ( f , x)]/E[S (r, x)], whereas the latter performs averaging on relative errors, i.e., E[S ( f , x)/S (r, x)], where S is a scoring function.

16For a regression model, y = g(x)+e, where y is the response, x is the regressor, and bias e is in fact E[y−g(x)], or observation minus prediction.
17Using the maximum is equivalent to using the range, i.e., maximum minus minimum.
18This is the standard test condition for global irradiance. Such a normalization practice in irradiance forecasting corresponds to normalizing the

error with rated power in PV power forecasting
19This normalization resembles the Theil’s U statistic used in finance (Brown and Rozeff, 1978).
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Some of the above choices of normalization have been discussed by Hoff et al. (2013). Nonetheless, it is rather513

meaningless to pursue which normalization strategy is the best. As discussed in Section 2, these normalized errors514

have little if not no relevance in comparing forecasts made at different locations and timescales—the normalization515

values represent neither variability nor uncertainty. For instance, it is common to see MAPE of (hourly) transmission-516

level load forecasts reaching 2% or less. Does this mean that the load forecasters are a lot better in doing forecasting517

than solar forecasters, or is it simply that the transmission-level load profile is very predictable? When a forecaster518

who lives in Sahara Desert (for whatever reasons) reports a 5% mean-normalized nRMSE for his PV plant, other519

forecasters who live in Southeast Asia should really think twice before making that percentage a benchmark for their520

forecasts.521

Aside from the intrinsic differences in climates and forecast timescales, other implementation issues (see below)522

can also distort the interpretation of these normalized error metrics. It seems that the only advantage of using nor-523

malized error metrics is the convenience of quoting it as a percentage, e.g., “the forecast error is 10%.” Although524

many authors of this article agree to abandon the use of normalized measures, they are too deeply rooted in solar525

forecasting. In this regard, we call for the moderate use of normalized error metrics, and tabulating the values used526

for normalization is necessary.527

4.3. Some seemingly trivial implementation issues528

Forecast verification must be performed based on experimental data, i.e., out-of-sample forecasts and correspond-529

ing observations. There are several seemingly trivial implementation issues such as data trimming, normalization,530

counting nighttime hours, and data aggregation, that can strongly affect the verification results.531

Data trimming refers to quality control (QC) applied to experimental data prior to forecasting and verification.532

Owing to factors such as measurement uncertainty or irradiance modeling error, experimental data often contain533

spurious values. There is no universally-accepted QC procedure (Gueymard and Ruiz-Arias, 2016), but recommended534

QC for surface radiation measurements (Long and Shi, 2008), PV power output (Killinger et al., 2017), and satellite-535

based products (Urraca et al., 2017) is available. Partly attributed to the advent of statistical and machine-learning536

software, details of implementation become more opaque to forecasters. Therefore, forecasters should check the537

output of each step during forecasting, responsibly, to prevent spurious data from entering the final verification stage.538

To ensure forecast verification is performed with reasonably trimmed data, visual inspection as outlined in the previous539

section is necessary. It is however noted that data trimming based on forecast error is not recommended. One should540

not remove a forecast–observation pair just because it produces a large error, instead, the cause behind it should be541

investigated.542

There is also no well-accepted answers to questions “which normalization value should be used” and “whether543

the nighttime hours should be included during validation.” For instance, normalizing the RMSE using the maximum544

observation would give a smaller value than normalizing with mean observation. To address such ambiguity, and allow545

the transformation from a normalized to an scale-dependent error metric, it is necessary to report the normalizing546

value alongside the accuracy measures. Similarly, inclusion of nighttime hours would make the RMSE smaller, since547

the forecasts—0 W/m2—are perfect during those hours. Hence, nighttime data should always be excluded from548

verification. This could be ensured by using a zenith angle filter of < 85◦. Additionally, the filter eliminates some549

modeling and measurement artifacts under low-sun conditions.550

In state-of-the-art solar forecasting, it is common to have more than one data source involved (e.g., ground mea-551

surements, satellite-derived irradiance, reanalysis data, NWP output, or PV output). Even in the simple case of552

verifying NWP forecasts, one needs to compare the NWP forecasts to ground-based measurements. The issue of553

data aggregation naturally comes into play, since the ground-based measurements are usually at a higher temporal554

resolution (e.g., 1 min) than the NWP output (e.g., hourly).555

There are three schemes of averaging to aggregate a high-temporal-resolution time series to a low-temporal-556

resolution one, namely, floor, ceiling, and round. A floor aggregation means that the data within a time interval are557

aggregated to the earliest time stamp in that interval, e.g., 1-min data points between 1:00 to 2:00 are aggregated and558

stamped as 1:00. Similarly, the ceiling-aggregation scheme stamps the aggregated data with the last time stamp of an559

interval, and the round-aggregation scheme collapses the data to the center time stamp of an interval.560

In this regard, inappropriate data aggregation creates temporal misalignment between different datasets, hence561

amplifies forecast errors unnecessarily (see Fig. 1 in Yang, 2018). To select the correct data-aggregation scheme, it is562
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necessary to understand how each dataset is produced. In other words, one must always read the data documentation.563

For instance, satellite-derived irradiance and some NWP outputs have a “snapshot” nature, and the round-aggregation564

schemes is appropriate. In the case of reanalysis, the data often represent the condition over the past hour, and the565

ceiling-aggregation schemes is appropriate. Finally, it is important to re-emphasize that here we are concerned with566

deterministic forecasts only. Other strategies and metrics are needed when dealing with probabilistic forecasts and567

prediction intervals (see, e.g., Chu et al., 2015).568

4.4. Implementing the RMSE skill score569

The skill score, s, is perhaps the one number that interests solar forecasters the most, the version stated in Eq. (4)
is strongly recommended, i.e., s = 1 − RMSE( f , x)/RMSE(r, x), where r is the clear-sky persistence forecasts. In a
day-ahead scenario, one often assumes the diurnal transient of clear-sky irradiance does not change over the forecast
horizon. In other words, clear-sky persistence forecasts for day d are the observations from the most recent day that
has complete records. More formally,

rt+h =xt+h−dh/me·m−dl/me·m, (15)

where t is the start of the operating day, h is forecast horizon, l is forecast submission lead time, m is frequency570

of data in a day (number of observations per day), and d·e is the ceiling operator. Time parameters t, h, l and m571

have a unit equals to the temporal resolution of observations, e.g., 15 min, 30 min, or hourly. For example, the572

California Independent System Operator (CAISO) requires the 24-h-ahead hourly forecasts to be submitted 18.5 h573

prior to the operating day. In this case, h ∈ {1, 2, · · · , 24}, l = 18.5, m = 24, and Eq. (15) reduces to rt+h = xt+h−48.574

If the observations are half-hourly, and a forecaster is interested in forecasts out to 36 h with no lead time, i.e.,575

h ∈ {1, 2, · · · , 72}, l = 0, m = 48, Eq. (15) becomes rt+h = xt+h−48 for h ∈ {1, 2, · · · , 48} and rt+h = xt+h−96 for576

h ∈ {49, 50, · · · , 72}. In the literature, these operational forecasting time parameters are rarely considered (Yang577

et al., 2017). In this regard, the forecast verification results reported in academic literature do not represent the “true”578

accuracy of a model—without lead time, the errors are smaller than the actual errors one should anticipate.579

Another way of implementing day-ahead clear-sky persistence was used by Perez et al. (2013). In their version,
the forecast is given by:

rt+h =ct+h ·
1
m

m∑
h′=1

xt+h′−dh/me·m−dl/me·m

ct+h′−dh/me·m−dl/me·m
. (16)

Stated in words, it means that the daily clear-sky index from the last available day is projected for all forecast horizons.
Eq. (16) assumes the daily clear-sky index is averaged after the divisions. Alternatively, one can also interpret the daily
clear-sky index as the ratio of averaged irradiance and clear-sky irradiance. That is,

rt+h =ct+h ·

∑m
h′=1 xt+h′−dh/me·m−dl/me·m∑m
h′=1 ct+h′−dh/me·m−dl/me·m

. (17)

It is generally unclear which version produces better results. Thus, a case study using hourly GHI data from 7580

SURFRAD stations over 2015–2016 is conducted. The McClear model (Lefèvre et al., 2013) is used to compute581

the clear-sky GHI. The CAISO day-ahead forecast submission requirement is used, so Eqs. (16) and (17) reduce to582

rt+h = (1/24) · ct+h ·
∑24

h′=1(xt+h′−48/ct+h′−48) and rt+h = ct+h ·
∑24

h′=1 xt+h′−48/
∑24

h′=1 ct+h′−48, respectively. Table 5 depicts583

the results. It is found that Eq. (17) is the most accurate in terms of RMSE,20 it is therefore recommended for future584

works on deterministic solar forecast verification.585

To make reference forecasts for an intra-day or intra-hour scenario, the procedure is straightforward. Using the
earlier notations, we have

rt+h =ct+h ·
xt−l

ct−l
, (18)

20It is noted that only RMSE is of interest here, since the clear-sky persistence is used for RMSE skill score computation.
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Table 5: RMSEs, in W/m2, of day-ahead clear-sky persistence using hourly data from 7 SURFRAD stations over 2015–2016. Three versions as
shown in Eqs. (15)–(17) are compared. The row below the header shows station-specific E(x). The McClear model (Lefèvre et al., 2013) is used to
compute the clear-sky GHI.

BON DRA FPK GWN PSU SXF TBL
338.00 495.26 350.44 388.69 331.33 361.53 405.23

Eq. (15) 229.55 157.06 192.19 238.48 232.95 224.13 224.54
Eq. (16) 203.93 138.20 171.11 212.10 206.65 195.81 198.76
Eq. (17) 202.24 137.46 169.13 208.46 203.98 192.38 198.13

i.e., the reference forecast from the clear-sky persistence model for time t +h is the clear-sky index observation at time586

t− l adjusted to the clear-sky irradiance at t +h. For example, CAISO’s real-time market requires hour-ahead forecasts587

to be submitted 75 min prior to the operating hour at 15-min resolution out to 5 h. In this case, assuming observations588

have a resolution of 15-min, then h = {1, 2, · · · , 20} and l = 5. In Eq. (18), a same clear-sky index observation is used589

for all h.590

There are many clear-sky models available. To that end, several extensive reviews on clear-sky models were591

published recently (Antonanzas-Torres et al., 2019; Ruiz-Arias and Gueymard, 2018). One particular issue is that592

most of the high-performance clear-sky models require several inputs, such as total column ozone amount, precipitable593

water, or aerosol single-scattering albedo, which have to be sourced from remote-sensing or reanalysis databases; this594

limits the worldwide uptake of these models. On the other hand, simple models that require only a few input variables595

usually have limited performance. Therefore, the McClear model (Lefèvre et al., 2013) might be the best choice for596

solar forecasters. Being a physical model based on radiative transfer, the performance of McClear is among the best.597

Better still, McClear is available as a web service21 for all locations in the world, from 2004-01-01 up to two days598

ago.22 The R package “camsRad” is also freely available, and offers access to McClear through an API.599

5. Conclusion600

The increasing amount of solar forecasting research calls for harmonization of forecast verification measures601

and methods among researchers. This paper has discussed a wide spectrum of issues relevant to verification of602

deterministic solar forecasts. The final recommendation is listed as follows.603

• The distribution-oriented approach to forecast verification can be used for forecast diagnosis. Since the joint604

distribution contains all time-independent information relevant to verification, it is more general than the tradi-605

tional measure-oriented approach. It is recommended to use the distribution-oriented approach to visualize and606

quantify forecast quality.607

• Bias–variance factorization and Murphy–Winkler factorization link various qualitative aspects of the skillful-608

ness of the forecasts, such as uncertainty, reliability, resolution, association, or discrimination, to quantitative609

measures.610

• Small MBE is a prerequisite of all solar forecasts and therefore not a critical metric to judge forecast quality.611

• When the normalized errors are used, it is necessary to also tabulate the normalization values.612

• Generally, forecasters are encouraged to use any meaningful measure to gauge their forecasts. However, if a613

chosen measure is inconsistent with the given forecast directive, it is inappropriate.614

• Implementation issues are important for the final interpretation of forecast accuracies. Nighttime data should615

be excluded from forecast verification. Special care is needed during data trimming and aggregation.616

21http://www.soda-pro.com/web-services/radiation/cams-mcclear
22This two-day lag makes it unsuitable for operational forecast verification. Nonetheless, during forecast verification, one is only interested in

analyzing the long-term behavior of different models, this lag does not concern us.
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• We strongly recommend using the RMSE skill score based on clear-sky persistence in all solar forecasting617

works. Skill score denotes the relative improvement of a model of interest from clear-sky persistence, and it618

can be used to compare forecasts produced in different works.619

• As forecasting workflow is getting more and more complex, it is advised to perform sanity checks throughout620

the course of producing forecasts. To ensure the worldwide uptake of any proposed forecasting model, source621

code and data should be made available whenever possible. Without reproducibility, it would be cumbersome,622

if not impossible, to verify the reported forecast accuracies.623

Appendix A. On choice of naïve reference624

As discussed in Section 2, the clear-sky persistence model should be used as the naïve reference for deterministic625

solar forecasting. In the simplest case, a persistence model uses the most recent observation available as forecasts;626

this is the definition of persistence. Such forecast is sometimes referred to as “random walk” (i.e., rt = rt−1 + et),627

or “no change” forecast. In the case of solar irradiance forecasting, raw persistence forecasts should be the most628

recent observed irradiance. Notwithstanding, given the bell-shaped diurnal transient of irradiance due to the apparent629

movement of the Sun, it is important to take this cycle into consideration. Makridakis et al. (2008) noted in their book630

that seasonally adjusted persistence can frequently do much better than the raw persistence. So the question is “how631

do we adjust for the seasonality?”632

Besides using the clear-sky irradiance, one can use the extraterrestrial irradiance (the irradiance at the top of the633

atmosphere) for adjustment. The ratio between surface and extraterrestrial GHI is known as clearness index, k. In634

other words, the persistence is performed on clearness index, namely, rt+h = xt ·kt+h/kt. Both clear-sky persistence and635

clearness persistence adopt a multiplicative seasonality modeling approach. A particular problem with multiplicative636

seasonality is that during sunrise and sunset (small solar elevation angle), clear-sky index can become quite large,637

owing to the measurement uncertainty and the inaccuracy in the clear-sky models, and thus the forecast errors at those638

times can be large. To exclude those undesirable forecasts that severely distort the error metrics, solar forecasters639

usually apply a zenith angle filter, e.g., zenith angle < 85◦, before error computation. Alternatively, one can opt an640

additive seasonality modeling, e.g., rt+h = xt − ct + ct+h. However, the remainder series (i.e., xt − ct) in this case is still641

heteroscedastic.642

One can also use a “cloudiness index” where the reference forecast is referred to as “smart persistence” by Inman643

et al. (2015). This reference model includes the effects of air mass, aerosols, turbidity, i.e., every major atmospheric644

effect but clouds. Because the timescale for turbidity variations is much larger than the timescale for cloud-cover645

variations, the cloudiness index provides the best possible reference for short-time forecasts. Any skill calculated over646

the cloudiness-index persistence measures the ability to capture cloud cover changes over short periods of time, and647

thus the qualifier “smart”. Note that skills reported over smart persistence are necessarily lower than skills reported648

over clear-sky persistence since it is virtually impossible for a forecast to improve over smart persistence for cloudless649

skies since the smart persistence reference model includes all effects of diurnal variability (air mass or the cosine of650

the solar zenith angle corrections) plus the combined effect of water vapor path and aerosols. These types of smart651

persistence reference forecasts are typically updated sub-hourly (Inman et al., 2015; Reno and Hansen, 2016).652

The literature on treatment of seasonal and multi-seasonal (e.g., diurnal and yearly cycles in solar irradiance) time653

series is rich. Chapter 3 of Makridakis et al. (2008) provides a detailed account for various statistical techniques for654

time series decomposition. In the solar forecasting literature, various techniques such as Fourier series, exponential655

smoothing, STL decomposition, additive clear-sky decomposition have also been extensively explored (e.g., Dong656

et al., 2013; Yang et al., 2015; Voyant and Notton, 2018). However, as compared to the clear-sky persistence, these657

methods usually require more steps, which may be a reason for their limited uptake. Since the main goal of seasonally658

adjusted persistence is to construct a better reference model than raw persistence, clear-sky persistence makes a good659

trade-off between implementation difficulty and baseline accuracy.660
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Appendix B. On Coimbra’s skill score sCoimbra and s in meteorology661

Consider the square of Coimbra’s definition for U in Eq. (8):

U2 =
1
N

N∑
t=1

(
ft − xt

ct

)2

, (B.1)

where f , x, and c are forecasts, observations, and the clear-sky irradiance expectations, respectively. If we assume the
clear-sky irradiance has m discrete states, namely, c(1), · · · , c(m), the summation can be rewritten as:

U2 =
1
N

∑
t∈N1

(
ft − xt

c(1)

)2

+
∑
t∈N2

(
ft − xt

c(2)

)2

+ · · · +
∑
t∈Nm

(
ft − xt

c(m)

)2


=
1
N

 1(
c(1))2

∑
t∈N1

( ft − xt)2 +
1(

c(2))2

∑
t∈N2

( ft − xt)2 + · · · +
1(

c(m))2

∑
t∈Nm

( ft − xt)2


=

1
N

 |N1|(
c(1))2 E

[
( f − x)2

∣∣∣c = c(1)
]

+
|N2|(
c(2))2 E

[
( f − x)2

∣∣∣c = c(2)
]

+ · · · +
|Nm|(
c(m))2 E

[
( f − x)2

∣∣∣c = c(m)
] , (B.2)

whereN1, · · · , Nm are the sets of data index that satisfy events ct = c(1), · · · , ct = c(m), respectively. The notation |N1|

denotes the cardinality of N1. If the expected squared error of forecast f is same for all c, i.e.,

E
[
( f − x)2

∣∣∣c = c(1)
]

=E
[
( f − x)2

∣∣∣c = c(2)
]

= · · · = E
[
( f − x)2

∣∣∣c = c(m)
]

= E
[
( f − x)2

]
, (B.3)

then

U2 =
1
N

 |N1|(
c(1))2 +

|N2|(
c(2))2 + · · ·

|Nm|(
c(m))2

E [
( f − x)2

]
. (B.4)

Similarly, the square of Coimbra’s definition for V in Eq. (9):

V2 =
1
N

N∑
t=1

(
xt−1

ct−1
−

xt

ct

)2

=
1
N

N∑
t=1

(
rt − xt

ct

)2

=
1
N

 |N1|(
c(1))2 +

|N2|(
c(2))2 + · · ·

|Nm|(
c(m))2

E[(r − x)2], (B.5)

if the squared reference forecast error, (r − x)2, is independent of the clear-sky irradiance. Hence, the skill score
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definition by Marquez and Coimbra (2013):

sCoimbra =1 −
U
V

=1 −

√
1
N

{
|N1 |

(c(1))2 +
|N2 |

(c(2))2 + · · ·
|Nm |

(c(m))2

}√
E

[
( f − x)2]√

1
N

{
|N1 |

(c(1))2 +
|N2 |

(c(2))2 + · · ·
|Nm |

(c(m))2

}√
E

[
(r − x)2]

=1 −

√
E

[
( f − x)2]√

E
[
(r − x)2]

=1 −
RMSE( f , x)
RMSE(r, x)

= s, (B.6)

if both the squared forecast error and squared clear-sky persistence forecast error are independent of the clear-sky662

irradiance.663

Appendix C. Links between measure-oriented and distribution-oriented forecast verification approaches664

The rule of the lazy statistician states (Wasserman, 2013): Let y = g(x), then

E(y) =E[g(x)] =

∫
g(x)dF(x) =

∫
g(x)p(x)dx. (C.1)

The two-variable case is handled in a similar way: Let z = g(x, y), then

E(z) =E[g(x, y)] =

∫
g(x, y)dF(x, y) =

∫∫
g(x, y)p(x, y)dxdy. (C.2)

This rule links the joint distribution to a large collection of error metrics. For example, MBE, MAE, and RMSE can
be written as:

MBE =E[( f − x)] =

∫∫
( f − x)p( f , x)d f dx, (C.3)

MAE =E(| f − x|) =

∫∫
| f − x|p( f , x)d f dx, (C.4)

RMSE =

√
E[( f − x)2] =

[∫∫
( f − x)2 p( f , x)d f dx

] 1
2

. (C.5)

Similarly, it is possible to express nMBE, nMAE, nRMSE, maximum absolute error, mean average percentage error,665

etc., in this form. Hence, it is clear that all of these metrics are just different ways to summarize the joint distribution.666

In the report by Beyer et al. (2009), four metrics based on the Kolmogrov–Smirnov test were proposed, namely,667

the Kolmogrov–Smirnov test integral (KSI), the OVER index, KSE (linear combination of KSI and OVER), and RIO668

(sum of KSD and RMSE, divided by 2). For instance, KSI calculates approximately the area between the ECDFs of669

f and x, OVER calculates the area of those instances between the two ECDFs that exceed the critical value at 99%670

level of confidence. While the descriptions of these metrics can be confusing, and the calculation can be ambiguous671

(the number of intervals during the trapezoidal integration needs to be defined), they are in fact solar engineers’ early672

attempts to summarize the (differences between) marginal distributions of f and x.673

Lastly, Section 3 demonstrates several ways to summarize the conditional distributions. In these cases, the sum-674

maries are performed together on marginal distributions. More specifically, type 1 conditional bias and resolution are675

summaries of p(x|f) and p(f), whereas type 2 conditional bias and discrimination are summaries of p(f|x) and p(x)676

(Murphy, 1997).677
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To that end, the open questions “are there better ways to summarize these distributions,” “which summaries allow678

cross-work forecast comparison,” “how to analyze the summaries graphically,” etc., jointly motivate future research679

on verification of deterministic solar forecasts.680
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